
Operating Systems

Lecture 5

Thread

Prof. Mengwei Xu

10/7/2024 Mengwei Xu @ BUPT 2

• Process management

• Input/output

• Thread management

• Memory management

• File systems and storage

• Networking

• Graphics and window management

• Authentication and security

Recap: OS Functions to Apps

10/7/2024 Mengwei Xu @ BUPT 3

• Flexibility

• Safety

• Reliability

• Performance

Recap: Syscall Design

https://www.oilshell.org/blog/2022/03/backlog-arch.html

10/7/2024 Mengwei Xu @ BUPT 4

• A typical example of how fork() and exec() are used

Recap: fork() in Unix

10/7/2024 Mengwei Xu @ BUPT 5

• File Descriptor (fd): a number (int) that uniquely identifies an
open file in a computer's operating system. It describes a data
resource, and how that resource may be accessed.

Recap: File Descriptor in Unix

• Each process has its own file

descriptor table

• A file can be opened multiple times

and therefore associated with many

file descriptors

• More in filesystem courses

10/7/2024 Mengwei Xu @ BUPT 6

Recap: System Calls Stubs

User Program

Main () {

open(arg1, arg2)

}

User Stub

file_open () {

push #SYSCALL_OPEN

trap

return

}

Kernel Stub

file_open_handler () {

copy_args_from_user()

check_args()

file_open(arg1, arg2)

copy_ret_to_user()

return

}

Kernel

file_open () {

// do the real operation

}

1

2 Hardware trap

34

5

6

Trap return

10/7/2024 Mengwei Xu @ BUPT 7

Recap: System Calls Stubs

Kernel Stub

file_open_handler () {

copy_args_from_user()

check_args()

file_open(arg1, arg2)

copy_ret_to_user()

return

}

• Can kernel directly access the

parameters without copying?

• Why parameters must be copied from

user memory to kernel memory?

• Can we check parameters before

copying them to kernel memory?

https://developer.ibm.com/articles/l-kernel-memory-access/

10/7/2024 Mengwei Xu @ BUPT 8

System Calls Stubs

Kernel Stub

file_open_handler () {

copy_args_from_user()

check_args()

file_open(arg1, arg2)

copy_ret_to_user()

return

}

• Can kernel directly access the

parameters without copying?
- Yes in most OSes, because kernel and

user share memory space

• Why parameters must be copied from

user memory to kernel memory?
- Original parameters are stored in user

memory stack

- copy_from_user and copy_to_usr

• Can we check parameters before

copying them to kernel memory?
- time of check vs. time of use (TOCTOU)

attack

https://developer.ibm.com/articles/l-kernel-memory-access/

10/7/2024 Mengwei Xu @ BUPT 9

• Thread abstraction

• Thread implementation

Goals for Today

10/7/2024 Mengwei Xu @ BUPT 10

• Thread abstraction

• Thread implementation

Goals for Today

10/7/2024 Mengwei Xu @ BUPT 11

• Concurrency (并发): multiple activities at the same time
- Network service handles many client requests at the same time

- User-interactive apps and background apps

• One of the most useful yet difficult concept in computer systems

• Concurrency vs. Multi-task vs. Parallel (并行)

Concurrency

10/7/2024 Mengwei Xu @ BUPT 12

• Program structure: expressing logically concurrent tasks

Thread Use Cases (1/4)

Main (UI) threadUI Handler thread

Click a button to display

contents fetched from web

Network thread

10/7/2024 Mengwei Xu @ BUPT 13

• Responsiveness: shifting work to run in the background

Thread Use Cases (2/4)

Main (UI) threadUI Handler thread

Click a button to display

contents fetched from web

Network thread
Other background

threads

• Sync data with server

• Data compression

• Database operations

• ..

10/7/2024 Mengwei Xu @ BUPT 14

• Performance: exploiting multiple processors
- Concurrency turns into parallelism

Thread Use Cases (3/4)

Extensively used in matrix

operations and deep learning

10/7/2024 Mengwei Xu @ BUPT 15

• Performance: exploiting multiple processors
- Concurrency turns into parallelism

Thread Use Cases (3/4)

Extensively used in matrix

operations and deep learning

• Can more cores always bring

speedup?

• How about asymmetric cores?

10/7/2024 Mengwei Xu @ BUPT 16

• Performance: managing I/O devices
- Processors are usually faster than I/O devices

- Keep the processors busy!

Thread Use Cases (4/4)

10/7/2024 Mengwei Xu @ BUPT 17

• Thread: a single execution sequence that represents a

separately schedulable task

Thread Abstraction

Each thread executes a sequence of instructions

(assignments, conditionals, loops, procedures, etc)

just as in the sequential programming model

The OS can run, suspend, or resume a

thread at any time

10/7/2024 Mengwei Xu @ BUPT 18

• Thread: a single execution sequence that represents a

separately schedulable task

Thread Abstraction

Each thread executes a sequence of instructions

(assignments, conditionals, loops, procedures, etc)

just as in the sequential programming model

The OS can run, suspend, or resume a

thread at any time

The minimal scheduling

unit in OS!

10/7/2024 Mengwei Xu @ BUPT 19

• Thread: a single execution sequence that represents a

separately schedulable task

Thread Abstraction

Threads in the same process

share memory space, but

not execution context
• There will be thread context switch

10/7/2024 Mengwei Xu @ BUPT 20

• Thread execution speed is “unpredictable”
- Thread switching is transparent to the code

Thread Abstraction

Programmer’s
View

int main() {
x = x + 1;
y = y + 1;
z = x + y;

}

Possible
Execution #2

int main() {
x = x + 1;
==========
Thread suspended.
Other thread running.
Thread resumed
==========

y = y + 1;
z = x + y;

}

Possible
Execution #3

int main() {
x = x + 1;
y = y + 1;
==========
Thread suspended.
Other thread running.
Thread resumed
==========

z = x + y;
}

Possible
Execution #1

int main() {
x = x + 1;
y = y + 1;
z = x + y;

}

10/7/2024 Mengwei Xu @ BUPT 21

Thread vs. Process

Thread Process

Currency Both of them can be scheduled by OS.

Context
Different threads/processes have their dedicated execution contexts

(registers values and stacks). Scheduling them incurs context switching.

Definition

A single execution sequence that

represents a separately schedulable

task

An execution of any program

The minimal scheduling unit

“a lightweight process”
The minimal dedicated memory space

Resources Consume less resources Consume more resources

Memory
Threads in the same process share

memory space

Processors do not share memory

space

Communications

Easier and faster for threads in the

same process to communicate with

each other

More complex and slow for different

processes to communicate with each

other

10/7/2024 Mengwei Xu @ BUPT 22

POSIX Thread APIs

#include <pthread.h>, Compile and link with -pthread.

int pthread_create(

pthread_t *thread,

const pthread_attr_t *attr,

void *(*start_routine)(void *),

void *arg

);

Creates a new thread with attributes specified in attr, storing information

about it in thread. Concurrently with the calling thread, thread executes

the function start_routine with the argument arg.

int pthread_join(

pthread_t thread,

void **retval

);

Waits for the thread specified by thread to terminate. If that thread has

already terminated, it returns immediately. The thread specified by thread

must be joinable. It copies the exit status of the target thread into the

location pointed to by retval.

int pthread_yield(); The calling thread voluntarily gives up the processor to let some other

threads run.The scheduler can resume running the calling thread

whenever it chooses to do so.

void pthread_exit(void *retval); Terminates the calling thread and returns a value via retval that. If

another thread is already waiting in a call to thread_join, resume it.

It looks like an asynchronous procedure call

10/7/2024 Mengwei Xu @ BUPT 23

POSIX Thread Example

What’s the possible output?

10/7/2024 Mengwei Xu @ BUPT 24

Thread Lifecycle

Init

Runnable

(ready)
Running

Finished

(dead)

Waiting

thread creation

pthread_create()

Event occurs, e.g., other

threads finished

Thread waits for event

pthread_join()

Thread exits

pthread_exit()

Scheduler resumes thread

Thread yields/Scheduler

suspends thread

pthread_yield()

10/7/2024 Mengwei Xu @ BUPT 25

• Thread abstraction

• Thread implementation

Goals for Today

10/7/2024 Mengwei Xu @ BUPT 26

• Thread Control Block (TCB)
- Stack pointer: each thread needs their own stack

- Copy of processor registers
❑ General-purpose registers for storing intermediate values

❑ Special-purpose registers for storing instruction pointer and stack pointer

- Metadata
❑ Thread ID

❑ Scheduling priority

❑ Status

- What’s different from PCB??

Thread Data Structures

10/7/2024 Mengwei Xu @ BUPT 27

• Thread Control Block (TCB)
- Stack pointer: each thread needs their own stack

- Copy of processor registers
❑ General-purpose registers for storing intermediate values

❑ Special-purpose registers for storing instruction pointer and stack pointer

- Metadata
❑ Thread ID

❑ Scheduling priority

❑ Status

Thread Data Structures

https://github.com/torvalds/linux/blob/master/tools/perf/util/thread.h

10/7/2024 Mengwei Xu @ BUPT 28

• Thread Control Block (TCB)
- Stack pointer: each thread needs their own stack

- Copy of processor registers
❑ General-purpose registers for storing intermediate values

❑ Special-purpose registers for storing instruction pointer and stack pointer

- Metadata
❑ Thread ID

❑ Scheduling priority

❑ Status

• How large is the stack?
- In kernel, it’s usually small: 8KB in Linux on Intel x86

- In user space, it’s library-dependent
❑ Most libraries check if there is a stackoverflow

❑ Few PL/libs such as Google Go will automatically extend the stack when needed

Thread Data Structures

10/7/2024 Mengwei Xu @ BUPT 29

• Thread Control Block (TCB)

• Shared state
- Code

- Global variables

- Heap variables

Thread Data Structures

10/7/2024 Mengwei Xu @ BUPT 30

• Thread Control Block (TCB)

• Shared state

• OS does not enforce physical division on threads’ own
separated states
- If thread A has a pointer to the stack location of thread B, can A

access/modify the variables on the stack of thread B?

Thread Data Structures

10/7/2024 Mengwei Xu @ BUPT 31

• Kernel threads
- What are the use cases?

• User-level threads
- Can be implemented with or without kernel help

Thread Implementation

10/7/2024 Mengwei Xu @ BUPT 32

Calling Conventions

1. void func_A() {
2. int a = 1 + 2;
3. int c = func_B(a);
4. print(c);
5. }

1. int func_B(int x) {
2. int y = x + 3;
3. return y;
4. }

• How does func_A goes to func_B?

• How does func_B return correctly back to func_A?

Search for “calling conventions” and try to understand what

happens at assembly/instruction level

stack

10/7/2024 Mengwei Xu @ BUPT 33

• Create a thread
- Allocate per-thread state: the

TCB and stack

- Initialize per-thread state:
registers (args)

- Put TCB on ready list

Implementing Kernel Threads

1. void thread_create(thread_t *thread, void
(*func)(int), int arg) {

2. TCB *tcb = new TCB();
3. thread->tcb = tcb;
4. tcb->stack_size = INITIAL_STACK_SIZE;
5. tcb->stack = new Stack(tcb->stack_size);
6. tcb->sp = tcb->stack + tcb->stack_size;
7. tcb->pc = stub;

8. *(tcb->sp) = arg;
9. tcb->sp --;
10. *(tcb->sp) = func;
11. tcb->sp --;

12. thread_dummySwitch(tcb);
13. tcb->state = READY;
14. readyList.add(tcb);
15. }

16. void stub(void (*func)(int), int arg) {
17. (*func)(arg);
18. thread_exit(0);
19. }

// explained later
1. void thread_dummySwitch(TCB tcb) {
2. *(tcb->sp) = stub;
3. tcb->sp--;
4. tcb->sp -= SizeOfPopad;
5. }

10/7/2024 Mengwei Xu @ BUPT 34

• (Voluntary) kernel thread context switch
- thread_yield()

• (Involuntary) kernel thread context switch
- Interrupts, exceptions

Implementing Kernel Threads

10/7/2024 Mengwei Xu @ BUPT 35

• (Voluntary) kernel thread
context switch
- Turn off interrupts (why?)

- Get a next ready thread

- Mark the old thread as ready

- Add the old thread to readyList

- Save all registers and stack point

- Set stack point to the new thread

- Restores all the register values

• How to ensure the correct return
location?

Implementing Kernel Threads

1. void thread_yield() {
2. TCB *chosenTCB;
3. disableInterrupts(); // why??
4. chosenTCB = readyList.getNextThread();
5. if (chosenTCB == NULL) {
6. // Nothing to do here
7. } else {
8. runningThread->state = READY;
9. readyList.add(runningThread);
10. thread_switch(runningThread, chosenTCB);
11. runningThread->state = RUNNING;
12. }
13. enableInterrupts();
14. }

15. void thread_switch(oldTCB, newTCB) {
16. pushad;
17. oldTCB->sp = %esp;
18. %esp = newTCB->sp;
19. popad;
20. return;
21. }

10/7/2024 Mengwei Xu @ BUPT 36

Implementing Kernel Threads

10/7/2024 Mengwei Xu @ BUPT 37

• When does switch (change of pc) actually happen?

• What’s the goal of thread_dummpySwitch?

• What’s the purpose of stub function and how it is correctly
called (with correct args)?

• Why we need to disable interrupts during thread_switch?

A Few Questions

10/7/2024 Mengwei Xu @ BUPT 38

• (Involuntary) kernel thread context switch
- Save the states

- Run the kernel’s handler

- Restore the states

• Almost identical to user-mode transfer (3rd course), except:
- There’s no need to switch modes (or stacks)

- The handler can resume any thread on the ready list rather than
always resuming the thread/process that was just suspended

Implementing Kernel Threads

10/7/2024 Mengwei Xu @ BUPT 39

• Delete a thread
- Remove the thread from the ready list so it will never run again

- Free the per-thread state allocated for the thread

• Can a thread delete its own state?
- A bad case: a thread removes itself from the ready list, and an

interrupt occurs..

- A worse case: a thread frees its own state (stack), and..

Implementing Kernel Threads

10/7/2024 Mengwei Xu @ BUPT 40

• Delete a thread
- Remove the thread from the ready list so it will never run again

- Free the per-thread state allocated for the thread

• Can a thread delete its own state?
- A bad case: a thread removes itself from the ready list, and an

interrupt occurs..

- A worse case: a thread frees its own state (stack), and..

• Solution
- The thread moves its TCB from the ready list to a list of finished

threads

- Let other threads free those finished threads

Implementing Kernel Threads

10/7/2024 Mengwei Xu @ BUPT 41

• Implementing user-level multi-threaded processes through
1. Kernel threads (each thread op traps into kernel)

2. User-level libraries (no kernel support)

3. Hybrid mode

Implementing Multi-threaded Processes

Create a user-level thread
- User lib allocates a user-

level stack

- Invokes thread_create()
syscall

- Stores a pointer to the TCB
in the PCB (why?)

10/7/2024 Mengwei Xu @ BUPT 42

• Implementing multi-threaded processes through kernel threads
- Each thread operation invokes the corresponding kernel thread syscall

Implementing Multi-threaded Processes

Create a kernel thread
- Allocate per-thread state in

kernel: the TCB and stack

- Initialize per-thread state:
registers (args)

- Put TCB on ready list

How about join, yield, exit?

10/7/2024 Mengwei Xu @ BUPT 43

• Implementing multi-threaded processes in user libraries
- The library maintains everything in user space

❑ TCBs, stacks, ready list, finished list

- The library determines which thread to run

- A thread op is just a procedure call

Implementing Multi-threaded Processes

10/7/2024 Mengwei Xu @ BUPT 44

• Implementing multi-threaded processes in user libraries
- The library maintains everything in user space

❑ TCBs, stacks, ready list, finished list

- The library determines which thread to run

- A thread op is just a procedure call

• How can we make user-level threads run currently, as kernel is
not aware of their existence?

• How can program change the PC and stack pointer?

Implementing Multi-threaded Processes

10/7/2024 Mengwei Xu @ BUPT 45

• Implementing multi-threaded processes in user libraries
- The library maintains everything in user space

❑ TCBs, stacks, ready list, finished list

- The library determines which thread to run

- A thread op is just a procedure call

• How can we make user-level threads run currently, as kernel is
not aware of their existence?
- The preemptive way: timer interrupts (upcall) from kernel

- The cooperative way: threads yield voluntarily

• How can program change the PC and stack pointer?
- jmp and esp

Implementing Multi-threaded Processes

10/7/2024 Mengwei Xu @ BUPT 46

Threads in Kernel vs. User

User-levelThreads Kernel Threads

Currency Both of them run currently

Context Share heap/code, but have separated stack/registers

Role of kernel No kernel assistance at all
Each thread operation invokes

kernel syscall

Speed (context switch,

creating, etc)
Fast Slow

Memory cost Small Large

I/O waiting time

Cannot avoid the I/O waiting time

(though there are certain

optimizations to do so)

Kernel can schedule another thread

when I/O blocks

Multi-core processor
No parallel on multi-core

processors

Can schedule many threads in the

same process at the same time on

multi-core processors

10/7/2024 Mengwei Xu @ BUPT 47

• Implementing multi-threaded processes in hybrid way:
optimizations based on kernel threads
- Hybrid thread join: for example, no need for syscall if the thread to be

joined is already finished (with exit value saved in memory)

- Per-processor kernel thread with user-level thread implementation

- Scheduler activations: in recent Windows, the user-level scheduler can
be notified when a thread blocks in a syscall, so it can schedule
another thread to fully utilize the processor.

Implementing Multi-threaded Processes

10/7/2024 Mengwei Xu @ BUPT 48

• Easy Lab 1: implementing a user-level threading library
- Check it out on our website

Homework

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

